Andrew Ng - Machine Learning via Large-scale Brain Simulations - Technion lecture
Andrew Ng of Stanford University, Technion lecture: Machine Learning via Large-scale Brain Simulations Machine learning is a very successful technology, but applying it to a new problem usually means spending a long time hand-designing the input features to feed to the learning algorithm. This is true for applications in vision, audio, and text/NLP. To address this, researchers in machine learning have recently developed "deep learning" algorithms, which can automatically learn feature representations from unlabeled data, thus bypassing most of this time-consuming engineering. These algorithms are based on building massive artificial neural networks, that were loosely inspired by cortical (brain) computations. In this talk, I describe the key ideas behind deep learning, and also discuss the computational challenges of getting these algorithms to work. I'll also present a few case studies, and report on the results from a project that I led at Google to build massive deep learning algorithms, resulting in a highly distributed neural network trained on 16,000 CPU cores, and that learned by itself to discover high level concepts such as common objects in video.